

- 669 Physical Activity and the Prevention of Coronary Heart Disease
- 672 Handwashing and Glove Use in a Long-Term–Care Facility
- 675 Alcohol Use and Aquatic Activities683 Characteristics of Death Certifiers and Institutions Where Death is Pronounced
- Fulton County, Georgia, 1991
 Adult Blood Lead Epidemiology and Surveillance

MORBIDITY AND MORTALITY WEEKLY REPORT

685 Notices to Readers

Effectiveness in Disease and Injury Prevention

Public Health Focus: Physical Activity and the Prevention of Coronary Heart Disease

Coronary heart disease (CHD) is the leading cause of mortality in the United States: each year, CHD is newly diagnosed in approximately 1.5 million persons and accounts for an estimated \$47 billion in direct and indirect health-care costs (1). Multiple risk factors associated with CHD include genetic susceptibility, elevated serum cholesterol, low levels of high-density lipoprotein cholesterol, cigarette smoking, uncontrolled hypertension, obesity, diabetes mellitus, and physical inactivity (2). This report summarizes information about the potential efficacy and cost-effectiveness of physical activity promotion as a strategy for preventing CHD.

Efficacy and Attributable Risk

Mild to moderate levels of physical activity (e.g., walking, gardening, yardwork, and dancing) can help prevent CHD. In 1987, a review of 43 epidemiologic studies concluded that moderate to vigorous physical activity reduces risk for CHD (*3*). Two thirds of the studies documented a substantial inverse relation between physical activity and risk for CHD. In addition, the risk for CHD was increased nearly twofold for persons who were physically inactive (relative risk=1.9; 95% confidence interval=1.4–2.5), a level comparable to the relative risks associated with increased systolic blood pressure (2.1), cigarette smoking (2.5), and elevated serum cholesterol (2.4) (*4*). A subsequent meta-analysis (*5*) and results from other longitudinal studies (*6*) support the role of physical inactivity as a strong and independent risk factor for CHD.

Based on a national survey in 1985, 56% of men and 61% of women in the United States either never or irregularly engaged in physical activity (7). Specifically, 25% of men and 30% of women reported no leisure-time physical activity during the preceding month, and an additional 31% of men and women reported irregular physical activity. Of the 36% of men and 32% of women who were regularly active during leisure time, 8% of the men and 7% of the women reported participating in vigorous and intense activity (7).

An estimate of the population-attributable risk for CHD mortality associated with physical inactivity among a selected group of men from 1977 through 1985 was

Coronary Heart Disease - Continued

14% (6). In comparison, the risk for hypertension was 20%; for cigarette smoking, 13%; and for a positive family history of premature parental death, 20%. An analysis based on published studies and the U.S. death rate to estimate the number of deaths attributed to several risk factors for nine chronic diseases (8) indicated that, in 1986, a total of 205,254 deaths associated with CHD were attributed to never or irregularly engaging in physical activity—a number in excess of estimates for smoking (148,879), obesity (190,456), and hypertension (171,121) but similar to the estimates for elevated serum cholesterol (253,194).

Cost-Effectiveness

Based on 1989 mortality estimates for CHD, the extrapolated cost of physical inactivity is \$5.7 billion; among other risk factors for CHD, only elevated serum cholesterol (\geq 200 µg/dL) has a higher estimated cost (Table 1). A cost-effectiveness analysis to estimate the health and economic implications of a physical activity program in preventing CHD was conducted using a model of two hypothetical cohorts (one physically active and another inactive) of 1000 men aged 35 years (9). This analysis was based on a 30-year period to observe differences in the occurrence of CHD events, life expectancy, and quality-adjusted life expectancy. Physical activity was associated with 78 fewer CHD events and 1138 quality-adjusted life-years gained during the 30-year period. For each quality-adjusted life-year gained, the direct cost was \$1395, and total cost was \$11,313—amounts similar to the cost savings of other CHD intervention strategies (Table 2).

In Canada, a program promoting physical activity in a selected worksite was evaluated after 12 years of operation (*12*). The program consisted of professionally led physical activity classes 2–3 times per week for 30–45 minutes per session; an onsite gymnasium and exercise equipment also were made available to employees of the company. Per capita medical claims were lower in the intervention site than in a control site having no promotion of physical activity (*12*). For each worker, the intervention program saved \$679 in medical claims per year, a return of \$6.85 on each dollar invested.

Other examples of worksite-based programs have been estimated to cost employers approximately \$100-\$400 per employee per year (13). The estimated rate of return

Risk factor	Attributable risk (%) [†] (n=593,111)	Estimated cost (billions) [§]	
Physical inactivity	34.6	\$5.7	
Obesity	32.1	\$5.3	
Smoking	25.0	\$4.1	
Hypertension Elevated serum cholesterol	28.9	\$4.7	
(≥200 µg/dL)	42.7	\$7.0	

TABLE 1. Population attributable risk of coronary heart disease (CHD) deaths and estimated societal costs, by selected risk factors — United States*

* Source: Reference 8.

[†]Percentages cannot be summed because they are calculated independently for each risk factor. [§]Costs include hospital, physician, and nursing services; medicines; and lost productivity.

Coronary Heart Disease - Continued

is \$513 per employee year, which includes reduced health-care costs and reduced loss of productivity.

Reported by: Div of Chronic Disease Control and Community Intervention, National Center for Chronic Disease Prevention and Health Promotion; Applications Br, Div of Surveillance and Epidemiology, and Prevention Effectiveness Activity, Epidemiology Program Office, CDC.

Editorial Note: Epidemiologic, clinical, and experimental evidence have established the association between physical activity and the prevention of CHD (*3*). The finding that moderate levels of physical activity reduce the risk for CHD indicates that inactive persons can benefit from even modest increases in their physical activity. Theoretical estimates suggest that, in the United States, 20,000 fewer persons would die per year if half of those persons with no leisure-time physical activity begin to participate in moderate physical activity (e.g., brisk walking) a minimum of 2–3 times per week (*14*). Biologic mechanisms through which physical activity may prevent CHD include improved weight control, enhanced glucose tolerance and insulin sensitivity, reduced blood pressure, improved coronary artery blood flow, and augmented high-density lipoprotein levels.

Educating health professionals and lay persons to implement effective ways to reduce risk factors for CHD and subsequent disease could result in a substantial savings in health-care costs. To increase and promote levels of physical activity, health-care and public health providers should consider those factors associated with inactivity. In particular, prevalence of inactivity is higher among older persons and women. In addition, inactivity has been associated with cognitive factors (e.g., knowledge of the benefits of activity, the perception of poor health, lack of time, and dislike for activity), personal attributes (e.g., obesity, low educational attainment, lack of self-motivation, and lack of confidence in ability to perform an activity), and environmental factors (e.g., lack of social support, inconvenience of activities, aversion to vigorous activities, and cost of activities) (15).

In addition to worksite-based programs, physical activity levels have been successfully increased in school-based programs for students, faculty, and staff and in the community (16). Community-based campaigns focusing on participation, awareness

Risk factor	Prevalence (%)	Attributable risk (%)*	Cost effectiveness
Physical inactivity	58.0	34.6	\$11,313 per QALY [†]
Hypertension	18.0	28.9	\$25,000 per QALY§
Smoking	25.5	25.0	\$21,947 total lifetime benefits of quitting [¶]
Obesity Elevated serum cholesterol	23.0	32.1	NA**
(≥200 µg/dL)	37.0	42.7	\$28,000 per QALY ^{††}

TABLE 2. Selected risk factors for coronary heart disease, by prevalence, population-
attributable risk, and cost effectiveness — United States

*Percentages cannot be summed because they are calculated independently for each risk factor.

[†]Quality-adjusted life-years.

§Source: Reference 9.

[¶]Source: *Reference 10*.

**Not available.

^{††}Source: *Reference 11*.

Coronary Heart Disease — Continued

through media and education, and environmental efforts (e.g., increased access to trails, parks, and school facilities) have resulted in short-term improvements in the physical activity habits of targeted groups. Other potential sites for promoting physical activity include physician's offices and health clinics, as well as the home and neighborhood environment, where the emphasis should be on participation in a variety of self-directed, moderate-level physical activities (e.g., gardening, yardwork, and walking) with a goal of 30 minutes of activity per day at least 5 days per week.

References

- 1. American Heart Association. 1992 Heart and stroke facts. Dallas: American Heart Association, 1991.
- 2. Multiple Risk Factor Intervention Trial Research Group. Multiple Risk Factor Intervention Trial: risk factor changes and mortality results. JAMA 1982;248:1465–77.
- 3. Powell KE, Thompson PD, Caspersen CJ, Kendrick JS. Physical activity and theincidence of coronary heart disease. Annu Rev Public Health 1987;8:253–87.
- 4. Pooling Project Research Group. Relationship of blood pressure, serum cholesterol, smoking habit, relative weight and ECG abnormalities to incidence of major coronary events: final report of the Pooling Project. J Chronic Dis 1978;31:202–306.
- 5. Berlin JA, Colditz GA. A meta-analysis of physical activity in the prevention of coronary heart disease. Am J Epidemiol 1990;132:639–46.
- 6. Paffenbarger RS Jr, Hyde RT, Wing AL, Lee I-M, Jung DL, Kampert JB. The association of changes in physical-activity level and other lifestyle characteristics with mortality among men. N Engl J Med 1993;328:538–45.
- 7. Caspersen CJ, Christenson GM, Pollard RA. Status of the 1990 physical fitness and exercise objectives—evidence from NHIS 1985. Public Health Rep 1986;101:587–92.
- 8. Hahn RA, Teutsch SM, Rothenberg RB, Marks JS. Excess deaths from nine chronic diseases in the United States, 1986. JAMA 1990;264:2654–9.
- 9. Hatziandreu EI, Koplan JP, Weinstein MC, Caspersen CJ, Warner KE. A cost-effectiveness analysis of exercise as a health promotion activity. Am J Public Health 1988;78:1417–21.
- 10. Weinstein MC, Stason WB. Cost-effectiveness of intervention to prevent or treat coronary heart disease. Annu Rev Public Health 1985;6:41–63.
- 11. Oster G, Colditz GA, Kelly NL. The economic costs of smoking and benefits of quitting for individual smokers. Prev Med 1984;13:377–89.
- 12. Shephard RJ. Twelve years experience of a fitness program for the salaried employees of a Toronto life assurance company. American Journal of Health Promotion 1992;6:292–301.
- 13. Shephard RJ. Current perspectives on the economics of fitness and sport with particular reference to worksite programmes. Sports Med 1989;7:286–309.
- 14. Powell KE, Blair SN. The public health burdens of sedentary living habits: theoretical but realistic estimates. Med Sci Sports Exerc (in press).
- 15. King AC, Blair SN, Bild DE, et al. Determinants of physical activity and interventions in adults. Med Sci Sports Exerc 1992;24(suppl):221S–36S.
- 16. Iverson DC, Fielding JE, Crow RS, Christenson GM. The promotion of physical activity in the United States population: the status of programs in medical, worksite, community, and school settings. Public Health Rep 1985;100:212–24.

Epidemiologic Notes and Reports

Handwashing and Glove Use in a Long-Term–Care Facility — Maryland, 1992

Residents of long-term-care facilities (LTCFs) are at risk for acquiring facilityassociated infections and consequent mortality (1,2). Despite this risk, no national guidelines exist for infection-control practices in LTCFs, and information regarding the

Handwashing and Glove Use — Continued

nature of infection-control practices in LTCFs is limited. To evaluate glove use and handwashing practices in an LTCF, and to determine factors associated with compliance with infection-control policies and the frequency of microbial transmission, Maryland Department of Health and Mental Hygiene (DHMH) and CDC staff observed glove use and handwashing practices on a chronic-care ward of an LTCF in Maryland for a 1-month period during 1992. This report summarizes the findings of this study.

The 56-bed ward was located in a 255-bed, university-based LTCF. Most ward residents were elderly and had been admitted to the ward because of severe decubitus ulcers. Staff-resident interactions were selected systematically, and all were observed by the same DHMH staff person. Staff-resident interactions were observed if they involved one of the following activities: oral feeding, bathing, transferring, excretory care, respiratory care, dispensation of oral medication, wound care, soiled linen change, or gastrostomy care. Existing policies in this facility were used as a basis for determining when glove use, glove change, and handwashing had been required. These policies required glove use when contact with mucous membranes, nonintact skin, or any moist body substance was anticipated. Handwashing was required before and after any direct resident contact and immediately after touching mucous membranes, nonintact skin, moist body substances, or contaminated environmental surfaces and before touching a different care site on the same resident, a different resident, or a clean environmental surface; handwashing was required regardless of glove use.

During the 1-month study period, 231 interactions performed by at least 44 different staff members were observed. Gloves were required for 192 (83%) of the interactions and were used for 161 (84%) of these episodes. Changing of soiled gloves was required during 152 (94%) of the 161 interactions and occurred during 24 (15%). The proportion of staff members who used gloves when required varied by activity and was lowest during gastrostomy care (23 [68%] of 34) and highest during wound care (33 [100%] of 33). The rate of glove use when required was 74% (37/50) for registered nurses (RNs) and 87% for both licensed practical nurses (LPNs) (41/47) and nursing assistants (NAs) (80/92).

Handwashing was required during 213 of the 231 interactions. The proportion of staff members who washed hands when required varied by stage of interaction: 32% (25/79) of the time, hands were washed when required before an interaction; less than 1% (1/182) of the time, during an interaction; and 64% (114/179) of the time, after an interaction. The rate of handwashing when required after an interaction varied by activity performed and ranged from 50% (16/32) after soiled linen changes to 100% (25/25) after wound care. LPNs complied with handwashing guidelines more frequently than RNs or NAs, regardless of stage of interaction.

During 158 (68%) of the 231 interactions, a staff member's soiled (i.e., contact with mucous membranes, nonintact skin, or any moist body substance) hands or gloves touched other areas of the resident being cared for, a different resident, themselves, or an environmental surface, potentially resulting in microbial transmission. The proportion of interactions varied by type of activity performed and ranged from 50% (16/32) during wound care to 97% (37/38) during soiled linen changes.

Based on the findings of this investigation, DHMH and CDC personnel recommended measures to improve infection-control practices in this facility.

Handwashing and Glove Use - Continued

Recommendations focused on the need to better educate and motivate staff members to adhere to infection-control policies.

Reported by: S Denman, MD, Johns Hopkins Univ School of Medicine, Baltimore; DM Dwyer, MD, Center for Clinical Epidemiology, E Israel, MD, State Epidemiologist, Maryland State Dept of Health and Mental Hygiene. P Vacek, MS, Biometry Facility, Univ of Vermont, Burlington. Childhood and Respiratory Diseases Br, Div of Bacterial and Mycotic Diseases, National Center for Infectious Diseases; Div of Field Epidemiology, Epidemiology Program Office, CDC.

Editorial Note: Since the early 1980s, guidelines have been developed for and studies have been conducted on the surveillance, prevention, and control of facility-associated infections, especially in acute-care settings (*3–5*). Although studies of staff practices (e.g., handwashing) that may be associated with facility-associated infections have been conducted in acute-care hospitals (*6*,*7*), little is known about infection-control practices in LTCFs (*8*). In addition, although general routes of disease transmission are known, it is unknown how, and under what circumstances, facility-associated infections are acquired.

The findings in this report characterize staff practices that may be related to LTCFassociated infections. However, these findings are subject to at least two limitations. First, because staff members could not be uniquely identified, observations may not have been independent. Second, the presence of an observer may have altered glove use and handwashing practices among LTCF staff. In addition, the findings in this LTCF may not be representative of other LTCFs in terms of residents or infection-control practices.

Because of the aging of the U.S. population and the increasing number of persons residing in LTCFs, the economic and health impact of LTCF-associated infections is likely to increase. The prevalence of facility-associated infections among LTCF residents is approximately 15% (2,9), and each resident is likely to acquire an average of two infections per year (1). Although factors such as decreased immune function, immobility, and frequent transfers to acute-care hospitals contribute to an increased risk for infection among LTCF residents, other risk factors, including breaches in handwashing and glove use, can be rectified by adherence to infection-control measures.

Effective infection-control practices are important in preventing infection in LTCF residents and reducing associated morbidity and mortality. The findings in this report indicate that lapses in infection control occur in LTCFs. Other factors likely to contribute to these lapses include high employee turnover, lack of an on-site infection-control practitioner, and reliance on staff with limited health-care training. In addition, LTCFs may not have written infection-control policies (*10*). Because no national guidelines exist for infection-control policies in LTCFs, many of these facilities have adopted guidelines developed for acute-care hospitals; however, further study is needed to determine whether these guidelines are practical or cost-effective.

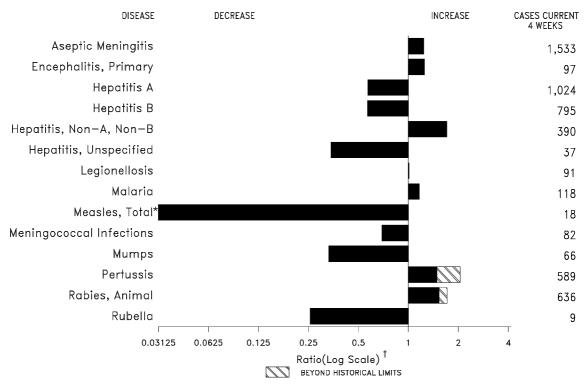
References

- 1. Jackson MM, Fierer J, Barrett-Connor E, et al. Intensive surveillance for infections in a threeyear study of nursing home patients. Am J Epidemiol 1992;135:685–96.
- 2. Garibaldi RA, Brodine S, Matsumiya S. Infections among patients in nursing homes. N Engl J Med 1981;305:731–5.
- 3. Haley RW, Culver DH, White JW, et al. The efficacy of infection surveillance and control programs in preventing nosocomial infections in US hospitals. Am JEpidemiol 1985;121:182–205.
- 4. Lynch P, Jackson MM, Cummings MJ, Stamm WE. Rethinking the role of isolation practices in the prevention of nosocomial infections. Ann Intern Med 1987;107:243–6.

Handwashing and Glove Use — Continued

- 5. Garner JS, Simmons BP. Guideline for isolation precautions in hospitals. Infect Control 1983;4:245–325.
- 6. Simmons B, Bryant J, Neiman K, Spencer L, Arheaut K. The role of hardwashing in prevention of endemic intensive care unit infections. Infect Control Hosp Epidemiol 1990;11:589–94.
- 7. Kaplan LM, McGuckin M. Increasing handwashing compliance with more accessible sinks. Infect Control 1986;7:408–10.
- 8. Smith PW, Daly PB, Roccaforte JS. Current status of nosocomial infection control in extended care facilities. Am J Med 1991;91(suppl):281S–5S.
- 9. Scheckler WE, Peterson PJ. Infections and infection control among residents of eight rural Wisconsin nursing homes. Arch Intern Med 1986;146:1981–4.
- 10. Khabbaz RF, Tenney JH. Infection control in Maryland nursing homes. Infect Control Hosp Epidemiol 1988;9:159–62.

Current Trends


Alcohol Use and Aquatic Activities — United States, 1991

Drowning, a leading cause of death from unintentional injury in the United States, accounted for approximately 4600 fatalities in 1991 (*1,2*). Although 25%–50% of adolescents and adults who drowned had consumed alcohol near the time of death (*3*), information regarding drinking behaviors during aquatic activities is limited. To assist in refining strategies for prevention of alcohol-related injury in aquatic settings, during July 15–September 30, 1991, the Boston University School of Public Health surveyed a national sample of adolescents and adults regarding their participation in aquatic activities and associated alcohol use. This report summarizes these findings.

The two-stage Waksberg random-digit-dialing telephone procedure was used to obtain a probability sample of working residential telephone numbers in the continental United States (4,5). One randomly designated respondent aged \geq 16 years was selected from each household. Of 3042 households contacted, 2706 persons (89%; 1255 [46%] men; 1451 [54%] women) reported participation in at least one activity on or near the water during the year preceding the interview and participated in the survey. Respondents were aged 16–94 years (mean: 42 years; median: 39 years). The standard error does not exceed ±2% for any given point estimate in this study. The most frequently reported aquatic activities were swimming (75%) and boating (72%).

Respondents were asked about alcohol use during participation in aquatic activities during the year preceding the interview. Of the 2706 respondents, 1889 (70%; 926 [74%] males; 963 [66%] females) reported alcohol use, and 817 (30%) abstained. Of the 1889 alcohol users, 1156 (61%; 656 [52%] males; 500 [34%] females) had consumed alcohol on at least one occasion while participating in an aquatic activity. The likelihood of having consumed alcohol varied by type of aquatic activity: of 2031 swimmers and 1943 boaters, 487 (24%) and 630 (32%), respectively, reported having used alcohol during those activities during the preceding year.

Respondents who participated in an aquatic activity during the 30 days preceding the interview (n=1877) were asked about associated alcohol use during their last day on or near the water. Of the 1877 respondents, 522 (28%) reported consuming alcohol during their last day of water recreation: 366 (70%) drank beer; 112 (21%), wine; 82 (16%), liquor; and 16 (3%), some other alcoholic beverage. Men who drank reported

FIGURE I. Notifiable disease reports, comparison of 4-week totals ending September 4, 1993, with historical data — United States

*The large apparent decrease in reported cases of measles(total) reflects dramatic fluctuations in the historical baseline. (Ratio (log scale) for week thirty-five is 0.02942).

[†]Ratio of current 4-week total to mean of 15 4-week totals (from previous, comparable, and subsequent 4-week periods for the past 5 years). The point where thehatched area begins is based on the mean and two standard deviations of these 4-week totals.

	Cum. 1993		Cum. 1993
AIDS* Anthrax Botulism: Foodborne Infant Other Brucellosis Cholera Congenital rubella syndrome Diphtheria Encephalitis, post-infectious Gonorrhea Haemophilus influenzae (invasive disease) [†]	67,732 8 29 2 62 15 7 113 253,456 813	Measles: imported indigenous Plague Poliomyelitis, Paralytic [§] Psittacosis Rabies, human Syphilis, primary & secondary Syphilis, congenital, age < 1 year [¶] Tetanus Toxic shock syndrome Trichinosis Tuberculosis	38 196 7 - 39 1 17,212 677 27 163 9 13,713
Hansen Disease Leptospirosis Lyme Disease	115 25 4,321	Tularemia Typhoid fever Typhus fever, tickborne (RMSF)	92 217 295

TABLE I. Summary — cases of specified notifiable diseases, United States, cumulative, week ending September 4, 1993 (35th Week)

*Updated monthly; last update July 31, 1993. [†]Of 751 cases of known age, 247 (33%) were reported among children less than 5 years of age. [§]Two (2) cases of suspected poliomyelitis have been reported in 1993; 4 of the 5 suspected cases with onset in 1992 were confirmed; the confirmed cases were vaccine associated.

[¶]Reports through first quarter of 1993.

		r	Enceph			3.00	Hepatitis (Viral), by type						
	AIDS*	Aseptic Menin-	Primary	Post-in-	Gond	orrhea	A	B	NA,NB	Unspeci-	Legionel- losis	Lyme Disease	
Reporting Area	Cum.	gitis Cum.	Cum.	fectious Cum.	Cum.	Cum.	Cum.	Cum.	Cum.	fied Cum.	Cum.	Cum.	
	1993	1993	1993	1993	1993	1992	1993	1993	1993	1993	1993	1993	
UNITED STATES	67,732	6,932	465	113	253,456	330,195	13,992	8,149	3,191	415	775	4,321	
NEW ENGLAND Maine	3,232 94	196 24	12 2	5	5,487 57	6,945 65	317 12	360 9	339 4	9	36 4	1,151 6	
N.H. Vt.	67 14	24 23	- 3	2	43 18	80 18	16 3	57 7	264 2	2	1	36 4	
Mass. R.I.	1,818 219	87 38	5 2	3	1,967 271	2,534 483	161 60	227 16	62 7	7	27 4	124 183	
Conn.	1,020	-	-	-	3,131	3,765	65	44	-	-	-	798	
MID. ATLANTIC Upstate N.Y.	15,598 2,373	490 252	37 25	7 4	29,980 5,656	36,493 7,538	730 247	940 285	244 157	4 1	160 52	2,284 1,269	
N.Y. City	8,289	104	1	-	7,880	12,611	177	121	1	-	3	3	
N.J. Pa.	2,991 1,945	134	11	3	5,090 11,354	5,101 11,243	207 99	269 265	58 28	3	24 81	514 498	
E.N. CENTRAL	5,419	1,021	121	20	48,617	61,026	1,515	968	434	10	204	41	
Ohio Ind.	938 634	382 131	45 14	4 8	15,331 5,189	18,603 5,795	200 475	141 149	32 8	1	108 38	22 8	
III. Mich.	1,939 1,379	201 278	23 29	2 6	13,208 11,083	19,097 14,632	387 138	166 287	40 322	3 6	10 40	5 6	
Wis.	529	29	10	-	3,806	2,899	315	225	32	-	8	-	
W.N. CENTRAL Minn.	2,428 511	409 61	18 7	-	13,134 1,678	17,565 1,914	1,609 304	420 48	102 3	11 4	50 1	105 52	
lowa Mo.	141 1,374	70 112	1	-	658 7,559	1,090 9,804	35 993	17 296	7 71	1 6	7 13	7 7	
N. Dak.	1 22	12 15	3 5	-	38 183	58 119	63 13	- 270	-	-	1	2	
S. Dak. Nebr.	135	7	-	-	476	1,143	139	12	8	-	23	4	
Kans. S. ATLANTIC	244 14,279	132 1,619	2 90	- 51	2,542 68,078	3,437 100,189	62 852	47 1,567	13 443	- 57	5 141	33 589	
Del.	253	44	3	-	944	1,182	9	118	88	-	10	286	
Md. D.C.	1,630 896	163 27	20	-	11,020 3,219	10,304 4,383	120 6	186 34	8	5	33 13	109 2	
Va. W. Va.	1,049 46	172 17	29 19	6	8,096 404	11,129 602	102 11	104 28	26 19	27	5 1	55 9	
N.C. S.C.	790 933	162 21	17	-	16,983 7,208	16,654 7,460	52 11	216 35	54 3	- 1	18 14	64 7	
Ga.	1,854	109	1	-	4,660	29,932	67	147	72	-	27	29	
Fla. E.S. CENTRAL	6,828 1,796	904 445	1 18	45 7	15,544 29,617	18,543 32,640	474 180	699 859	173 620	24 1	20 32	28 14	
Ky.	213	175	7	6	3,191	3,255	81	59	10	-	12	3	
Tenn. Ala.	731 531	96 119	5 1	-	8,909 10,677	10,243 11,359	35 41	724 71	596 4	- 1	13 2	8 3	
Miss.	321	55	5	1	6,840	7,783	23	5	10 217	-	5	-	
W.S. CENTRAL Ark.	6,957 267	813 43	35 1	2	29,762 5,821	36,348 5,183	1,372 36	1,101 37	217 2	127 2	21 3	36 1	
La. Okla.	921 590	59 1	4 7	-	7,965 2,350	10,350 3,658	52 112	144 204	88 83	3 9	2 11	1 17	
Tex.	5,179	710	23	2	13,626	17,157	1,172	716	44	113	5	17	
MOUNTAIN Mont.	2,948 22	430	18	4 1	7,491 53	8,210 75	2,753 58	401 4	220 2	57	53 5	17	
ldaho Wyo.	52 31	7 5	-	-	119 63	73 35	130 12	34 21	- 71	1	1 5	2 8	
Colo.	985	116	7	-	2,379	2,921	645	50	36	33	6	-	
N. Mex. Ariz.	240 992	92 140	3	2	643 2,785	609 2,855	261 1,011	147 67	67 11	2 9	3 11	1	
Utah Nev.	197 429	25 45	1 1	- 1	226 1,223	221 1,421	561 75	39 39	24 9	11 1	7 15	2 4	
PACIFIC	15,075	1,509	116	17	21,290	30,779	4,664	1,533	572	139	78	84	
Wash. Oreg.	1,008 575	-	1	-	2,609 1,100	2,683 1,146	516 65	150 23	130 11	8	9	3 2	
Caliř. Alaska	13,233 47	1,404 15	111 3	17	16,861 356	26,159 474	3,492 534	1,334 8	419 9	128	62	78	
Hawaii	212	90	1	-	364	317	57	18	3	3	7	1	
Guam P.R.	- 1,950	2 37	-	-	38 350	48 151	2 56	2 256	- 49	1 2	-	-	
V.I. Amer. Samoa	34	-	-	-	79 35	70 31	13	4	-	-	-	-	
C.N.M.I.	-	3	-	-	58	61	-	1	-	1	-	-	

TABLE II. Cases of selected notifiable diseases, United States, weeks endingSeptember 4, 1993, and August 29, 1992 (35th Week)

N: Not notifiable U: Unavailable *Updated monthly; last update July 31, 1993. C.N.M.I.: Commonwealth of Northern Mariana Islands

				s (Rube			Menin- gococcal	Mu	mps	F	Pertussi	s		Rubella	3
Reporting Area	Malaria	Indig	enous	Impo	orted*	Total	Infections		•	-					
	Cum. 1993	1993	Cum. 1993	1993	Cum. 1993	Cum. 1992	Cum. 1993	1993	Cum. 1993	1993	Cum. 1993	Cum. 1992	1993	Cum. 1993	Cum. 1992
UNITED STATES	5 750	1	196	5	38	2,116	1,662	12	1,132	189	2,820	1,588	2	146	133
NEW ENGLAND		-	56	-	4	55	94	-	8	1	491	127	-	1	6
Maine N.H.	1 6	- U	2 1	U	-	3 13	5 12	U	-	- U	13 214	7 31	- U	1	1
Vt. Mass.	1 27	-	30 14	-	1 2	- 14	4 53	-	- 2	-	55 161	6 53	-	-	-
R.I.	2	-	-	-	1	21	1	-	2	-	6	-	-	-	4
Conn.	17	-	9	-	-	4	19	-	4	1	42	30	-	-	1
MID. ATLANTIC Upstate N.Y.	114 43	-	7	1 1†	4 2	201 111	199 91	-	88 33	22 22	332 152	73 38	1 1	42 9	10 7
N.Y. City	24	-	2	-	-	54	19	-	-	-	7	9	-	15	-
N.J. Pa.	31 16	-	5		2	36	31 58	-	8 47	-	35 138	26	-	13 5	3
E.N. CENTRAL	45	-	14	3	5	50	262	-	157	-	485	232	-	5	9
Ohio	10	-	5	3†§		6	76	-	63	-	211	42	-	1	-
Ind. III.	3 25	-	- 5	-	-	20 16	44 72	-	3 38	-	53 72	21 29	-	1	8
Mich. Wis.	7	-	4	-	1 1	4 4	42 28	-	50 3	-	28	8 132	-	2 1	1
W.N. CENTRAL	- 19		-		2	4 11	20 110	- 1	34	33	121 262	132	-	1	- 8
Minn.	4	-	-	-	-	10	7	1	2	26	132	33	-	-	-
lowa Mo.	2 5	-	-	-	-	1	18 43	-	7 19	7	20 77	3 64	-	- 1	3 1
N. Dak.	2	-	-	-	-	-	3	-	5	-	3	13	-	-	-
S. Dak. Nebr.	2 3	- U	-	- U	-	-	3 9	- U	- 1	Ū	7 9	7 7	- U	-	-
Kans.	1	-	-	-	2	-	27	-	-	-	14	10	-	-	4
S. ATLANTIC Del.	213 2	1	23 1	-	5	120 1	320 11	2	359 5	10	304 9	113 6	-	9 2	13
Md.	29	-	-	-	4	16	40	-	65	3	100	17	-	2	5
D.C. Va.	10 19	-	-		- 1	- 14	5 31	- 1	- 20	2 2	6 40	1 10	-	-	-
W. Va.	2	-	-	-	-	-	11	-	13	-	10	7	-	-	1
N.C. S.C.	90 1	-	-	-	-	24 29	55 29	-	195 14	-	45 8	22 9	-	-	- 2
Ga.	13	-	-	-	-	-	72	-	14	1	17	14	-	-	-
Fla.	47	1	22	-	-	36	66	1	33	2	69	27	-	5	5
E.S. CENTRAL Ky.	22 4	-	1	-		460 443	103 19	-	39	94 -	212 8	22 1	-	-	1
Ténn. Ala.	8	-	-	-	-	-	26 34	-	11	93 1	147	5	-	-	1
Miss.	6 4	-	1	-	-	17	24	-	21 7	-	46 11	13 3	-	-	-
W.S. CENTRAL	19	-	2	-	3	1,085	143	6	166	4	97	182	-	17	6
Ark. La.	3 2	-	- 1	-	-	-	16 28	- 2	4 14	- 1	7 7	9 6	-	- 1	-
Okla.	4	-	-	-	-	11	25	-	8	3	61	27	-	1	-
Tex.	10	-	1 3	-	3 1	1,074 27	74 132	4 2	140 47	- 9	22 247	140 246	-	15 7	6 7
MOUNTAIN Mont.	26 2	-	-	-	-	- 27	132	-	-	2	247	240	-	-	-
ldaho Wyo.	1	-	-		-	- 1	9 2	-	5 2	5	73 1	39	-	1	1
Colo.	15	-	2	-	1	22	23	-	14	-	73	27	-	-	1
N. Mex. Ariz.	5		-		-	2 2	4 65	N	N 7	2	32 38	57 94	-	- 2	- 2
Utah	1	-	-	-	-	-	11	-	3	-	25	24	-	3	1
Nev.	2	-	1	-	-	-	7	2	16	-	1	2	-	1	2
PACIFIC Wash.	238 21	-	89 -	1	14	107 10	299 55	1 -	234 10	16 6	390 40	456 136	1	64	73 6
Oreg. Calif.	4 207	U	- 78	U	-4	3 54	22 201	N 1	N 198	U 10	10 326	24 271	U	2 35	1 44
Alaska	1	-	-		1	9	13	-	8	-	4	6	-	1	-
Hawaii	5	-	11	1†	9	31	8	-	18	-	10	19	1	26	22
Guam P.R.	1	U	2 224	U	-	10 339	1 7	U	6 2	U	- 2	- 12	U	-	1
V.I.	-	-	-	-	-	-	-	-	4	-	-	-	-	-	-
Amer. Samoa C.N.M.I.	-	U -	1	U -	- 1	- 2	-	U	- 12	U	2 1	6 1	U	-	-
*For measles on															

TABLE II. (Cont'd.) Cases of selected notifiable diseases, United States, weeks ending
September 4, 1993, and August 29, 1992 (35th Week)

*For measles only, imported cases include both out-of-state and international importations. N: Not notifiable U: Unavailable [†] International [§] Out-of-state

Reporting Area	Syp (Primary &	hilis Secondary)	Toxic- Shock Syndrome	Tuber	culosis	Tula- remia	Typhoid Fever	Typhus Fever (Tick-borne) (RMSF)	Rabies, Animal
	Cum. 1993	Cum. 1992	Cum. 1993	Cum. 1993	Cum. 1992	Cum. 1993	Cum. 1993	Cum. 1993	Cum. 1993
UNITED STATES	17,212	22,960	163	13,713	15,082	92	217	295	5,790
NEW ENGLAND	274	460	10	317	292	-	18	3	983
Maine N.H.	3 25	2 33	2 2	24 9	18 3	-	- 1	-	- 58
Vt.	1	1	1	3	4	-	-	-	19
Mass. R.I.	102 11	229 23	4 1	165 39	149 23	-	12	3	395
Conn.	132	172	-	77	95	-	5	-	511
MID. ATLANTIC	1,574	3,294	28	3,152	3,608	1	47	23	2,277
Upstate N.Y. N.Y. City	144 810	257 1,827	15 1	323 1,860	453 2,128	1	10 26	4	1,748
N.J.	215	418	-	511	606	-	8	10	285
Pa.	405	792	12	458	421	-	3	9	244
E.N. CENTRAL Ohio	2,535 787	3,358 528	37 14	1,306 220	1,494 230	5 1	27 6	11 7	70 5
Ind.	214	182	1	137	114	1	1	1	5
III. Mich.	821 418	1,436 683	6 16	580 306	745 342	2 1	15 4	1 2	12 9
Wis.	295	529	-	63	63	-	1	-	39
W.N. CENTRAL	1,095	962	10	326	375	31	2	14	249
Minn. Iowa	51 33	62 35	2 5	40 37	109 27	-	-	1 4	36 44
Mo.	897	747	-	176	165	12	2	6	9
N. Dak. S. Dak.	1 1	1	-	5 11	7 17	- 15	-	2	51 32
Nebr.	10	24	-	14	16	1	-	-	7
Kans.	102	93	3	43	34	3	-	1	70
S. ATLANTIC Del.	4,706 84	6,355 147	21 1	2,419 30	2,785 36	2	32 1	141 1	1,382 109
Md.	263	450	1	266	231	-	7	11	402
D.C. Va.	249 446	298 522	- 6	119 299	84 248	-	- 3	- 8	13 260
W. Va.	9	13	-	53	69	÷	-	5	59
N.C. S.C.	1,310 713	1,665 870	3	343 281	340 275	1	2	79 9	62 111
Ga.	779	1,259	2	532	595	÷	1	22	322
Fla.	853	1,131	8	496	907	1	18	6	44
E.S. CENTRAL Ky.	2,655 223	2,905 97	9 2	889 254	958 265	4	4 1	33 5	80 11
Tenn.	750	804	3	144	244	3	1	18	-
Ala. Miss.	573 1,109	1,038 966	2 2	328 163	272 177	1	2	4	69
W.S. CENTRAL	3,635	4,096	2	1,534	1,680	35	2	61	391
Ark.	545	610	-	120	122	20	-	1	28
La. Okla.	1,746 281	1,698 222	- 2	- 97	138 110	- 12	1	1 55	5 55
Tex.	1,063	1,566	-	1,317	1,310	3	1	4	303
MOUNTAIN	163	251	9	351	401	9	8	9	126
Mont. Idaho	1	7 1	- 1	15 8	- 16	5	-	1	16 5
Wyo.	7	3	-	2	-	2	2	7	16
Colo. N. Mex.	42 24	37 29	2	32 46	30 53	- 1	5 1	1	19 7
Ariz.	73	126	1	154	192	-	2	-	49
Utah Nev.	4 12	7 41	4 1	21 73	56 54	1	-	-	4 10
PACIFIC	575	1,279	37	3,419	3,489	5	77	-	232
Wash.	37	65	7	174	202	1	4	-	
Oreg. Calif.	51 478	29 1,175	- 30	77 2,950	89 2,983	2 2	- 70	-	- 215
Alaska	6	4	-	38	46	-	-	-	17
Hawaii	3	6	-	180	169	-	3	-	-
Guam P.R.	1 374	3 215	-	28 152	58 135	-	-	-	- 29
V.I.	33	48	-	2	3	-	-	-	- 27
Amer. Samoa C.N.M.I.	- 3	- 5	-	2 19	43	-	-	-	-
0.11.111.1.	3	5	-	17	43	-	-	-	

TABLE II. (Cont'd.) Cases of selected notifiable diseases, United States, weeks ending
September 4, 1993, and August 29, 1992 (35th Week)

U: Unavailable

	A	All Cau	ses, By	· / Age (Y	(ears)		P&I [†]			All Cau	ises, By	y Age (Y	'ears)		P&I [†]
Reporting Area	All Ages	≥65	45-64	25-44	1-24	<1	Total	Reporting Area	All Ages	≥65	45-64	25-44	1-24	<1	Total
NEW ENGLAND Boston, Mass. Bridgeport, Conn. Cambridge, Mass. Fall River, Mass. Hartford, Conn. Lowell, Mass. Lynn, Mass. New Bedford, Mass New Haven, Conn. Providence, R.I. Somerville, Mass. Springfield, Mass. Waterbury, Conn.	669 175 22 24 25 59 19 35 55 3 37 34	444 103 34 19 21 40 15 14 25 18 45 28 28 24	36 10 4 2 8 2 3 4 5 6 - 8 2	88 21 1 7 1 2 2 6 3 1 - 6	19 6 3 - 1 3 1 - - - 1 - 2	19 9 1 - 1 - - 6 - 1	57 25 2 1 2 1 2 1 1 2 1 1 2 1	S. ATLANTIC Atlanta, Ga. Baltimore, Md. Charlotte, N.C. Jacksonville, Fla. Miami, Fla. Norfolk, Va. Richmond, Va. Savannah, Ga. St. Petersburg, Fla. Tampa, Fla. Washington, D.C. Wilmington, Del.	169 U 18	687 108 102 47 74 65 47 42 33 41 112 U 16	221 37 37 17 23 22 7 23 9 11 34 U 1	149 34 33 15 12 19 2 11 6 2 15 U	39 3 6 5 3 6 1 2 3 2 7 U 1	24 3 5 4 3 4 1 3 - 1 U	68 6 13 4 8 5 6 4 5 17 U
Worcester, Mass. MID. ATLANTIC Albany, N.Y. Allentown, Pa. Buffalo, N.Y. Camden, N.J. Elizabeth, N.J. Erie, Pa.§ Jersey City, N.J.	101 2,204 43 31 100 31 15 44 44	56 1,380 31 27 62 20 9 32 34	2 4 8 5	33 299 1 4 7 2 4 3	2 60 2 - 3 2 - - 2	1 47 - 1 - - - -	5 92 - 3 2 - 1 1	E.S. CENTRAL Birmingham, Ala. Chattanooga, Tenn. Knoxville, Tenn. Lexington, Ky. Memphis, Tenn. Mobile, Ala. Montgomery, Ala. Nashville, Tenn.	78 68 155 108 38 136	473 68 30 57 44 88 72 31 83	142 24 5 15 17 37 19 2 23	55 9 1 3 2 13 9 3 15	28 6 1 3 3 5 1 6	36 6 1 2 14 3 1 9	50 4 7 17 5 3 6
New York City, N.Y. Newark, N.J. Paterson, N.J. Philadelphia, Pa. Pittsburgh, Pa.§ Reading, Pa. Rochester, N.Y. Schenectady, N.Y. Scranton, Pa.§ Syracuse, N.Y. Trenton, N.J. Utica, N.Y. Yonkers, N.Y.	1,234 55 31 195 97 U 131 17 24 75 26 11 U	746 25 19 104 61 U 98 12 17 57 18 8 U	233 12 3 48 19 U 21 3 5 8	206 12 6 23 10 U 5 2 1 7 4 1 U	29 1 14 3 U 2 - 2 - U	20 6 2 6 4 U 5 - 1 1 - U	46 1 10 8 U 12 1 4 2 1 U	W.S. CENTRAL Austin, Tex. Baton Rouge, La. Corpus Christi, Tex. Dallas, Tex. El Paso, Tex. Ft. Worth, Tex. Houston, Tex. Little Rock, Ark. New Orleans, La. San Antonio, Tex. Shreveport, La. Tulsa, Okla.	1,291 71 31 152 77 89 354 71 121 205 26 94	771 50 22 U 89 43 59 200 44 47 136 17 64	240 12 3 U 28 12 11 76 22 18 37 7 14	166 7 5 U 24 10 11 57 3 21 16 1 11	75 2 1 U 7 8 2 15 22 11 1 4	36 - - 4 4 6 6 - 10 5 - 1	70 8 U 2 6 2 30 6 - 7 1 8
E.N. CENTRAL Akron, Ohio Canton, Ohio Chicago, III. Cincinnati, Ohio Cleveland, Ohio Columbus, Ohio Dayton, Ohio Detroit, Mich. Evansville, Ind. Fort Wayne, Ind. Gary, Ind. Grand Rapids, Micł Indianapolis, Ind. Madison, Wis. Milwaukee, Wis. Peoria, III. Rockford, III. South Bend, Ind. Toledo, Ohio Youngstown, Ohio	2,266 55 39 566 153 110 169 169 232 45 69 153 83 39 148 55 47 30 83 56	$\begin{array}{c} 1,340\\ 38\\ 30\\ 197\\ 107\\ 73\\ 121\\ 65\\ 129\\ 39\\ 40\\ 7\\ 37\\ 115\\ 28\\ 109\\ 41\\ 28\\ 22\\ 65\\ 49\end{array}$	4	243 1 101 7 11 7 13 39 1 8 3 1 19 4 11 4 4 4 4 3 1	178 125 4 4 14 14 13 1 5 6 2 11 2 4	75 2 33 5 1 6 3 7 2 6 2 1 4 1 2 -	117 4 9 19 2 19 4 4 6 5 6 7 1 15 7 2 2 4 1	MOUNTAIN Albuquerque, N.M. Colo. Springs, Colo Denver, Colo. Las Vegas, Nev. Ogden, Utah Phoenix, Ariz. Pueblo, Colo. Salt Lake City, Utah Tucson, Ariz. PACIFIC Berkeley, Calif. Fresno, Calif. Glendale, Calif. Honolulu, Hawaii Long Beach, Calif. Pasadena, Calif. Pasadena, Calif. Pasadena, Calif. Sacramento, Calif. San Diego, Calif.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	506 46 21 53 96 18 100 19 61 92 959 17 37 37 37 37 37 37 37 37 37 37 37 37 37	$\begin{array}{c} 161\\ 13\\ 7\\ 23\\ 39\\ 6\\ 31\\ 1\\ 28\\ 286\\ 2\\ 14\\ 2\\ 19\\ 18\\ 53\\ 1\\ 18\\ 53\\ 1\\ 14\\ 25\\ 16\\ 16\\ 16\\ 16\\ 16\\ 16\\ 16\\ 16\\ 16\\ 16$	65 9 6 11 2 19 3 6 7 172 4 15 1 9 9 40 3 9 10 21	40 5 1 4 6 2 9 1 4 8 5 1 3 - 2 5 12 1 4 4 5	23 1 5 1 9 - 5 - 29 - 3 - 2 6 3 1 3 - 2	45 4 5 10 2 7 9 8 80 5 4 2 3 3 14 2 6 8 9
W.N. CENTRAL Des Moines, Iowa Duluth, Minn. Kansas City, Kans. Kansas City, Mo. Lincoln, Nebr. Minneapolis, Minn. Omaha, Nebr. St. Louis, Mo. St. Paul, Minn. Wichita, Kans.	736 U 28 28 94 32 237 70 134 54 59	525 U 23 20 74 26 169 48 87 38 40	3 11 46 17 25 9	48 U 1 2 4 2 13 3 13 4 6	18 U 2 2 1 6 2 3	16 U 1 3 - 7 1 3 1 -	35 U 1 2 2 13 4 6 4 2	San Francisco, Cali San Jose, Calif. Santa Cruz, Calif. Seattle, Wash. Spokane, Wash. Tacoma, Wash.		82 100 U 88 29 39	27 37 U 32 12 14	20 6 U 16 5 4	1 3 U 7 2 1 508	5 1 U - 3 305	4 13 U 2 2 3 614

TABLE III. Deaths in 121 U.S. cities,* week ending September 4, 1993 (35th Week)

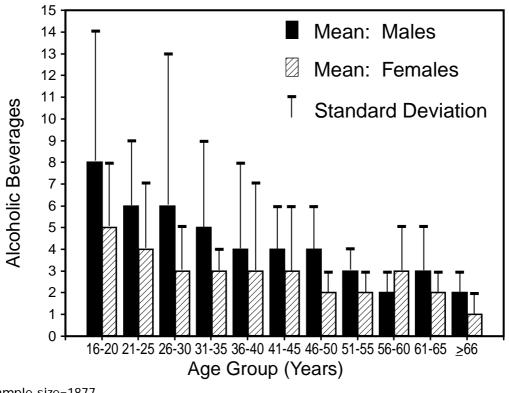
*Mortality data in this table are voluntarily reported from 121 cities in the United States, most of which have populations of 100,000 or more. A death is reported by the place of its occurrence and by the week that the death certificate was filed. Fetal deaths are not included.

[†]Pneumonia and influenza.

⁹Because of changes in reporting methods in these 3 Pennsylvania cities, these numbers are partial counts for the current week. Complete counts will be available in 4 to 6 weeks. ¹Total includes unknown ages.

U: Unavailable.

Alcohol Use — Continued


consuming more (mean: 4.5 alcoholic beverages) than did women (mean: 2.9 alcoholic beverages) on this occasion (p<0.0001) (Figure 1).

Of respondents who reported ever consuming alcohol during their lifetimes during aquatic activities (n=1183), 108 (9%) reported that they always or often drank on these occasions, 426 (36%) that they sometimes drank; and 649 (55%) that they rarely drank during aquatic activities. Two percent reported that alcohol consumption substantially increased their enjoyment of being on or near the water; 18%, "somewhat;" 23%, "a little;" and 56% reported that alcohol did not increase their enjoyment of being on or near the water.

Of the 3042 respondents, 2213 (73%) recalled at least one exposure to information (i.e., hearing or reading) about the risks of drinking during aquatic activities. A total of 2889 (95%) respondents strongly or somewhat favored laws for their own states that prohibit operation of recreational and commercial water vessels while intoxicated. In comparison, 34% and 42% of all respondents and respondents who had participated in boating, respectively, had knowledge of the 1984 legislation amending Title 46, United States Code, Chapter 23 (Operation of Vessels Generally), to include specific prohibitions regarding the operation of a vessel while intoxicated.

Reported by: J Howland, PhD, R Hingson, ScD, T Heeren, PhD, S Bak, MPH, Boston Univ School of Public Health; T Mangione, PhD, JSI Research and Training Institute. Epidemiology Br, National Center for Injury Prevention and Control, CDC.

*Sample size=1877.

Alcohol Use — Continued

Editorial Note: The determination that alcohol use is a risk factor for water-recreationrelated fatalities is well documented (6,7). Alcohol use is a risk factor for injury and death in aquatic settings for a variety of reasons. For example, alcohol can reduce body temperature and, through its effect on the central nervous system, can impair swimming ability (3). In the national study described in this report, one third of boaters reported consuming alcohol while boating—a finding similar to one reported in the 1989 American Red Cross National Boating Survey (8), in which 29% of all boaters reported consuming alcohol during a typical boat outing. Because alcohol affects balance, movement, and vision, its use represents a risk for injury and death for boat operators and passengers, who can fall overboard while intoxicated (3,9).

The male-to-female ratio of drowning rates in the United States is approximately 14:1 for drownings associated with boating and 5:1 for other drownings (1). Alcohol use contributes largely to the sex differential in annual drowning rates. In the findings in this report, half of men and one third of women reported alcohol use during aquatic activities, and men reported consuming significantly more alcohol than did women, suggesting that sex differences in drowning may be related to differences in alcohol use and consumption.

More than half of all respondents reported that drinking did not increase their enjoyment of aquatic activities, and nearly all favored legislation that prohibits alcohol use in aquatic settings. These findings should assist in planning or refining strategies for prevention of alcohol-related injury in aquatic settings. In addition, only one third of respondents were aware of federal laws prohibiting the operation of a recreational boat while under the influence of alcohol, suggesting that alcohol advertisements involving aquatic settings may contribute to misconceptions about the safety and legality of combining alcohol use with swimming and boating (1).

Possible strategies for the prevention of alcohol-related aquatic injuries include 1) public service announcements by federal and state government agencies and community-based organizations warning about the dangers of combining alcohol use with water recreation: such messages should be tailored to swimming and boating; 2) elimination of advertisements that encourage the use of alcohol during boating activities; 3) restriction of sale of alcoholic beverages at aquatic facilities; and 4) passage and enforcement of federal and state legislation restricting water-recreation activities during alcohol consumption.

References

- 1. Baker SP, O'Neill B, Ginsburg MJ, Li G. The injury fact book. 2nd ed. New York: Oxford University Press, 1992.
- 2. National Safety Council. Accident facts. 1992 ed. Itasca, Illinois: National Safety Council, 1992.
- 3. Howland J, Hingson R. Alcohol as a risk factor for drowning: a review of the literature (1950– 1985). Accid Anal Prev 1988;20:19–25.
- 4. CDC. Alcohol use and aquatic activities—Massachusetts, 1988. MMWR 1990;39:332-4.
- 5. Waksberg J. Sampling methods for random digit dialing. J Am Stat Assoc 1978;73:40-6.
- 6. Howland J, Mangione T, Hingson R, Levenson S, Winter M. A pilot survey of aquatic activities and related consumption of alcohol, with implications for drowning. Public Health Rep 1990;105:415–9.
- 7. CDC. Recreational boating fatalities—Ohio, 1983–1986. MMWR 1987;36:321-4.
- 8. American Red Cross. American Red Cross National Boating Survey: a study of recreational boats, boaters, and accidents in the United States. Washington, DC: American Red Cross, 1991.

Alcohol Use — Continued

9. Howland J, Smith GS, Mangione T, Hingson R, DeJong W, Bell N. Missing the boat on drinking and boating. JAMA 1993;270:91–2.

Current Trends

Characteristics of Death Certifiers and Institutions Where Death is Pronounced — Fulton County, Georgia, 1991

Information from death certificates (DCs) is used to measure health status and to set public health priorities at all levels in the United States. However, because of limitations in the training of physicians who certify deaths, the completeness and accuracy of cause-of-death information varies (*1–3*). To develop a basis for targeting education of physicians who certify deaths, CDC, in cooperation with the Fulton County (Georgia) Vital Records Office, reviewed a consecutive series of 500 DCs filed in Fulton County (1990 population: 648,951) from April 10 through May 2, 1991, to characterize the number and proportion of personal physicians (PPs) (defined as physician certifiers not acting in the capacity of medical examiners or coroners [MECs]) and MECs certifying death, as well as other factors. This report summarizes the results of that review.

In Georgia, DCs are filed in the county where death occurs. The 500 DCs included 306 (61.2%) filed for Fulton County residents. The DCs included deaths that occurred in January (three), February (11), March (75), and April (411) 1991. During the study, 13 hospitals and 23 long-term-care facilities (LTCFs [i.e., nursing homes and extended-care facilities not associated with hospitals]) were in operation in Fulton County.

PPs and MECs certified deaths pronounced at 23 institutions located in the county. Thirteen institutions were hospitals; four, LTCFs; and six, MEC offices in six Atlantaarea metropolitan counties, including Fulton County (although the incident leading to death may have occurred outside Fulton County, the death itself occurred in Fulton County). The number of persons certifying deaths in each institution ranged from one to 79. A total of 292 deaths were pronounced in the 13 hospitals (range: 2–103; mean: 30 deaths per hospital). Six deaths were pronounced at four of the LTCFs.

PPs certified 401 (80.2%) deaths and attributed 400 (99.9%) to natural causes. MECs certified 99 (19.8%) deaths and attributed 70 (70.7%) to natural causes. During the study period, 273 (12%) PPs certified 401 deaths; of these 273 PPs, 181 (66.3%) certified one death each. Each PP certified a mean of 1.5 (range: 1–13) deaths. The largest number of deaths (13) were certified by a PP at a hospital for terminally ill cancer patients. Of the 99 deaths certified by MECs, 95 (96.0%) were certified by eight medical examiners from two counties; coroners from four adjacent counties each certified one death. The mean number of certifications per MEC was 8.3; the largest number of certifications by a single MEC was 20.

Of the 401 persons whose deaths were certified by PPs, 290 (72.3%) were inpatients at institutions, 84 (20.9%) were pronounced dead on arrival at emergency departments, and 27 (6.7%) died in emergency departments. Standard procedure at the hospital where the largest number (103) of deaths was pronounced was for resident house staff to complete the DC.

Death Certification - Continued

Reported by: R Hanzlick, MD, Dept of Pathology and Laboratory Medicine, Emory Univ School of Medicine, Atlanta. Surveillance and Programs Br, Div of Environmental Hazards and Health Effects, National Center for Environmental Health, CDC.

Editorial Note: Based on a meeting of experts cosponsored by CDC and the National Committee on Vital and Health Statistics in 1991, recommendations were developed for more accurate and consistent completion of DCs in physician-education programs (4). In particular, the recommendations suggested that, because most physicians are likely to certify only a small number of deaths, educational efforts should be aimed at physicians and institutions most likely to be pronouncing and certifying deaths. The findings in Fulton County characterize physicians and institutions involved in certifying deaths in a defined geographic area and may assist in the design of educational programs to increase the accuracy and completeness of DCs. In particular, these findings indicate that death-certification education efforts may be most effective if they are hospital based and targeted to all hospitals to reach appropriate PP certifiers and focus on the certification of inpatient deaths from natural causes. Because results from this study indicate that MECs certified nearly 20% of all deaths, education efforts DCs.

Hospital-based efforts could include 1) training in death certification and registration before permanent or resident physician privileges are granted; 2) requiring physicians who certify the cause of death to complete approved training within a specified time after their first death certification; and 3) training a designated group of physicians to certify all deaths in the institution in consultation with the attending physician and after review of the medical record and other documents (5).

References

- 1. Kircher T. Autopsy and mortality statistics: making a difference. JAMA 1992;267:1264-8.
- 2. Hanzlick R, Parrish RG. The failure of death certificates to record the performance of autopsies [Letter]. JAMA 1993;269:47.
- 3. Hanzlick R. Improving accuracy of death certificates [Letter]. JAMA 1993;269:2850.
- NCHS. Report of the second workshop on improving cause-of death statistics. (Virginia Beach, Virginia). Hyattsville, Maryland: US Department of Health and Human Services, Public Health Service, CDC, April 1991.
- 5. National Center for Health Statistics. Physician's handbook on medical certification of death. Hyattsville, Maryland: US Department of Health and Human Services, Public Health Service, 1987; DHHS publication no. (PHS)87-1108.

Current Trends

Adult Blood Lead Epidemiology and Surveillance — United States, Second Quarter, 1993

Quarterly surveillance data from state-based Adult Blood Lead Epidemiology and Surveillance (ABLES) programs are reported for the second quarter of 1993. Previous quarterly summaries included multiple reports for persons received during the quarter (e.g., reflecting follow-up or repeat blood specimens). Counts of persons now exclude such multiple reports and report the highest blood lead level (BLL) obtained

Lead Epidemiology and Surveillance — Continued

during the reporting period. These data provide a better estimate of the number of persons with elevated BLLs in the system and assist with targeted prevention efforts.

Reported by: B Harrell, MPA, Div of Epidemiology, CH Woernle, MD, State Epidemiologist, Alabama Dept of Public Health. N Peterson, MS, C Fowler, MS, Arizona Dept of Health Svcs. A Osorio, MD, S Payne, MS, Occupational Health Surveillance and Evaluation Program, California Dept of Health Svcs. CJ Dupuy, MS, B Jung, MPH, Connecticut State Dept of Health Svcs. M Lehnherr, Occupational Disease Registry; H Howe, PhD, Div of Epidemiologic Studies, Illinois Dept of Public Health. K Choquette, MS, R Currier, DVM, S Jones, MPH, LA Wintermeyer, MD, State Epidemiologist, Iowa Dept of Public Health. E Coe, MPH, K Laranjani, MD, S DeSilva, MD, Health Registries Div, Maryland Dept of the Environment. R Rabin, MSPH, Div of Occupational Hygiene, Massachusetts Dept of Labor and Industries. P Dunbar, MPH, Bur of Child and Family Svcs, Michigan Dept of Public Health. T Ferrara, MD, D Solet, PhD, K Royce, Occupational Health Program, Bur of Risk Assessment, Div of Public Health Svcs, New Hampshire State Dept of Health and Human Svcs. B Gerwel, MD, D Valiante, R Ramaprasad, MS, Occupational Disease Prevention Program, New Jersey State Dept of Health. R Stone, PhD, New York State Health Dept. M Barnett, MS, State Health Div, Oregon Dept of Human Resources. J Gosten, MS, Occupational Health Program, Div of Environmental Health, Pennsylvania Dept of Health. R Marino, MD, A Gardner, Div of Health Hazard Evaluations, South Carolina Dept of Health and Environmental Control. T Willis, D Salzman, DM Perrotta, PhD, EnvironmentalEpidemiologist, Texas Dept of Health. D Beaudoin, MD, G Thompson, Bur of Epidemiology, Utah Dept of Health. L Hanrahan, MS, P Sarow, Div of Health, Wisconsin Dept of Health and Social Svcs. Div of Surveillance, Hazard Evaluations, and Field Studies, National Institute for Occupational Safety and Health, CDC.

quarter, 1993				
Reported BLL (µg/dL)	Second qu	arter, 1993	Cumulative	Cumulative
	No. reports	No. persons	reports, 1993 [†]	reports, 1992§

TABLE 1. Reports of elevated blood lead levels (BLLs) in adults — 20 states,* second

Reported BLL			Cumulative	Cumulative	
(μ g/dL)	No. reports	No. persons	reports, 1993 [†]	reports, 1992§	
25-39	4,053	1,975	19,332	15,279	-
40-49	1,061	442	5,349	4,288	
50-59	257	120	1,346	1,289	
≥60	161	77	746	585	
Total	5,532	2,614	26,773	21,441	-
					-

* Alabama, Arizona, California, Connecticut, Illinois, Iowa, Maryland, Massachusetts, Michigan, New Hampshire, New Jersey, New York, Oregon, Pennsylvania, South Carolina, Texas, Utah, Vermont, Washington, and Wisconsin.

[†]Cumulative totals for 1993 reflect first-quarter data from 16 states (Alabama, @nnecticut, Illinois, Iowa, Maryland, Massachusetts, Michigan, New Hampshire, New Jersey, New York, Oregon, South Carolina, Texas, Utah, Vermont, and Wisconsin) and second-quarter data from 20 states.

[§]Cumulative totals for 1992 reflect first- and æcond-quarter data from 12 states (Alabama, California, Connecticut, Illinois, Iowa, Maryland, Massachusetts, New Jersey, New York, Oregon, Texas, and Wisconsin).

Notice to Readers

Update: Polio Eradication — the Americas, 1993

On September 7, 1993, the Pan American Health Organization (PAHO) announced that 2 years have elapsed since the occurrence of the last case of poliomyelitis associated with wild poliovirus isolation in the Americas (Peru, August 1991). This achievement is a milestone in the global eradication of poliomyelitis. The only

Notices to Readers - Continued

infectious disease ever eradicated previously is smallpox, the last case of which was reported during August 1977 in Somalia.

PAHO has established an International Certification Commission on Polio Eradication (ICCPE) to independently verify whether transmission of wild poliovirus has been interrupted in the Americas. Before the Region of the Americas can be certified as polio-free, vaccination coverage with oral poliovirus vaccine must be kept at high levels, surveillance must be intensified (to comply with a series of specific indicators recommended by the ICCPE), and 3 years must elapse without any confirmed polio cases. This achievement is actively supported by each country in the Western Hemisphere and the many organizations collaborating closely with PAHO, including Rotary International, the U.S. Agency for International Development, the United Nations Children's Fund, the Inter-American Development Bank, and the Canadian Public Health Association.

Notice to Readers

Diagnosis of Tuberculosis by Nucleic Acid Amplification Methods Applied to Clinical Specimens

CDC and the Food and Drug Administration (FDA) have received inquiries from health-care providers about rapid assays for detecting *Mycobacterium tuberculosis* in clinical specimens. These assays, currently being offered by several commercial diagnostic laboratories, are based on DNA or RNA amplification procedures, such as the polymerase chain reaction. The false-positive rate, false-negative rate, reproducibility, and predictive value of these tests are not fully understood. In addition, none of the tests have been reviewed or approved by FDA, and their usefulness in patient management and public health practices has not been established. For the diagnostic evaluation of persons suspected of having tuberculosis, the Public Health Service advises clinicians to continue to rely on established techniques: medical history, physical examination, chest roentgenogram, tuberculin skin test, acid-fast stains of clinical specimens, standard or radiometric procedures for cultures and antimicrobial susceptibility testing, and nucleic acid probes for species identification of *M. tuberculosis* isolates.

Notice to Readers

New Pediatric Formulation of Recombivax HB[®]

On June 8, 1993, the Food and Drug Administration licensed a new formulation of the recombinant hepatitis B vaccine produced by Merck Sharpe & Dohme (West Point, Pennsylvania) (Recombivax HB[®]*). This pediatric formulation is intended specifically

^{*}Use of trade names and commercial sources is for identification only and does not imply endorsement by the Public Health Service or the U.S. Department of Health and Human Services.

Notices to Readers - Continued

for vaccinating infants born to hepatitis B surface antigen (HBsAg)-negative mothers and children aged <11 years. It is available in a concentration of 2.5 μ g/0.5 mL in single-dose (0.5 mL) and six-dose (3.0 mL) vials both with brown caps. The previously licensed formulation of Recombivax HB[®], which contains 10 μ g/1.0 mL, is now also available in a single-dose vial (5.0 μ g/0.5 mL) with a yellow cap. The 5.0- μ g dose is for high-risk infants (those born to HBsAg-positive women or to women whose HBsAg status is not known) and for adolescents (aged 11–19 years). The previously licensed formulation (10 μ g/1.0 mL) still can be used to provide the recommended microgram dose to infants, children, and adolescents.

Engerix-B[®] is the other hepatitis B vaccine available in the United States; it is manufactured by SmithKline Beecham (Pittsburgh, Pennsylvania), and no changes have been made in its formulation. Hepatitis B vaccines are supplied in several different concentrations and sizes of vials and the recommended age-specific dose varies by product (Table 1). Additional details regarding administration of hepatitis B vaccine are available in the recommendations of the Immunization Practices Advisory Committee (1) and the manufacturers' package inserts.

Reference

1. CDC. Hepatitis B virus: a comprehensive strategy for eliminating transmission in the United States through universal childhood vaccination—recommendations of the Immunization Practices Advisory Committee (ACIP). MMWR 1991;40(no. RR-13).

	Recombiv	ax HB [®] *	Engerix-B [®] *		
Group	Dose (μg)	(mL)	Dose (µg)	(mL)	
Infants of HBsAg [†] -negative mothers and children aged <11 yrs	2.5	(0.5) [§]	10.0	(0.5)	
Infants of HBsAg-positive mothers; prevention of perinatal infection	5.0	(0.5) [¶]	10.0	(0.5)	
Children and adolescents aged 11–19 yrs	5.0	(0.5) [¶]	20.0	(1.0)	
Adults aged ≥20 yrs	10.0	(1.0) [¶]	20.0	(1.0)	
Dialysis patients and other immunocompromised persons	40.0	(1.0)**	40.0	(2.0)††	

TABLE 1. Recommended doses of currently licensed hepatitis B vaccines

*Both vaccines are routinely administered in a three-dose series. Engerix-B[®] also has been licensed for a four-dose series administered at 0, 1, 2, and 12 months.

[†]Hepatitis B surface antigen.

[§]New pediatric formulation.

[¶]Previously licensed formulation; can be used to deliver the appropriate age-specific dose to infants of HBsAg-negative mothers and children aged <11 yrs.

** Special formulation.

^{††}Two 1.0-mL doses administered at one site in a four-dose schedule at 0, 1, 2, and 6 months.

The Morbidity and Mortality Weekly Report (MMWR) Series is prepared by the Centers for Disease Control and Prevention (CDC) and is available on a paid subscription basis from the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402; telephone (202) 783-3238.

The data in the weekly *MMWR* are provisional, based on weekly reports to CDC by state health departments. The reporting week concludes at close of business on Friday; compiled data on a national basis are officially released to the public on the succeeding Friday. Inquiries about the *MMWR* Series, including material to be considered for publication, should be directed to: Editor, *MMWR* Series, Mailstop C-08, Centers for Disease Control and Prevention, Atlanta, GA 30333; telephone (404) 332-4555.

All material in the *MMWR* Series is in the public domain and may be used and reprinted without special permission; citation as to source, however, is appreciated.

 Acting Director, Centers for Disease Control and Prevention
 Walter R. Dowdle, Ph.D.
 Acting Director, Epidemiology Program Office Barbara R. Holloway, M.P.H.
 Editor, *MMWR* Series Richard A. Goodman, M.D., M.P.H.
 Managing Editor, *MMWR* (weekly) Karen L. Foster, M.A.
 Writers-Editors, *MMWR* (weekly) David C. Johnson Patricia A. McGee Darlene D. Rumph Caran R. Wilbanks

☆U.S. Government Printing Office: 1993-733-131/83028 Region IV